Quantcast
Channel: 工程師 – TechOrange
Viewing all articles
Browse latest Browse all 585

【工程師快存起來】柏克萊推線上深度學習課程,14 週精通最新理論應用

$
0
0

柏克萊深度學習課程

【為什麼我們要挑選這篇文章】美國名校柏克萊推出最新深度學習課程!超好用資源降臨,工程師們趕快存起來閒暇時間進補。(責任編輯:陳伯安)

「《科技報橘》徵才中!跟我們一起定位台灣產業創新力 >> 詳細職缺訊息 
快將你的履歷自傳寄至  jobs@fusionmedium.com

柏克萊最新的無監督深度學習 CS294-158 課程資源放出啦!建議先收藏慢慢看!

這個課程涵蓋了兩個不需要標記數據的深度學習領域:深度生成模型(Deep Generative Models)和自主學習(Self-supervised Learning)。近年來生成模型的發展使得對高維原始數據建模成為可能,如自然圖像、音檔和文本語料庫等。

14 週由深入淺拆解「深度學習」基礎、應用

自監督學習的進步已經開始縮小監督表示學習和非監督表示學習之間的差距,對看不見的任務進行微調。

課程涵蓋了這兩類領域的理論基礎和最新的應用,一共有 14 周,每周的課程都有相應的 PDF 課件和 YouTube 講課影片。

直接來看課程目錄

Week 1 (1/30)

Lecture 1a: Logistics

Lecture 1b: Motivation

Lecture 1c: Likelihood-based Models Part I: Autoregressive Models

Week 2 (2/6)

Lecture 2a: Likelihood-based Models Part I: Autoregressive Models (ctd) (same slides as week 1)

Lecture 2b: Lossless Compression

Lecture 2c: Likelihood-based Models Part II: Flow Models

Week 3 (2/13)

Lecture 3a: Likelihood-based Models Part II: Flow Models (ctd) (same slides as week 2)

Lecture 3b: Latent Variable Models – part 1

Week 4 (2/20)

Lecture 4a: Latent Variable Models – part 2

Lecture 4b: Bits-Back Coding

Week 5 (2/27)

Lecture 5a: Latent Variable Models – wrap-up (same slides as Latent Variable Models – part 2)

Lecture 5b: ANS coding (same slides as bits-back coding)

Lecture 5c: Implicit Models / Generative Adversarial Networks

Week X (3/6)

Final Project Discussion

Week 6 (3/13)

Lecture 6a: Implicit Models / Generative Adversarial Networks (ctd) (same slides as 5c)

Lecture 6b: Non-Generative Representation Learning [UPDATED 3/24]

Week 7 (3/20)

Lecture 7: Non-Generative Representation Learning (same slides as 6b)

Week 8 (4/3)

Lecture 8a: Strengths/Weaknesses of Unsupervised Learning Methods Covered Thus Far

Lecture 8b: Semi-Supervised Learning

Lecture 8c: Guest Lecture by Ilya Sutskever

Week 9 (4/10)

Lecture 9a: Unsupervised Distribution Alignment

Lecture 9b: Guest Lecture by Alyosha Efros

Week 10 (4/17)

Lecture 10: Language Models (Alec Radford)

Week 11 (4/24)

Lecture 11: Representation Learning in Reinforcement Learning

Week 12 (5/1)

Lecture 12: Guest Lecture by Aaron van den Oord [slides not available]

Week 13 (5/8)

RRR week: no lecture

Week 14 (5/15)

Final Project Presentations

OpenAI 科學家手把手教學

講解這門課程的一共有四位:

深度學習課程教授

第一位是 Pieter Abbeel,他是柏克萊機器學習實驗室主任,柏克萊人工智慧研究實驗室(BAIR)聯合主任,還是 OpenAI 的科學家兼顧問;

第二位 Peter Chen 是 Pieter Abbeel 教授組裡的博士研究生,也是 OpenAI 的研究員;

其餘兩位 Jonathan Ho 和 Aravind Srinivas 也都是 Pieter Abbeel 教授組裡的博士研究生。

工程師快把資源存起來

課程傳送門: 點我

(本文經合作夥伴 大數據文摘 授權轉載,並同意  TechOrange 編寫導讀與修訂標題,原文標題為 〈伯克利最新无监督深度学习课程资源放出!〉。)

延伸閱讀

超省時 GitHub 新功能!點選函數就能看定義,記憶差的工程師不用再苦苦尋找了

【大騙局】《華爾街日報》拆穿 Engineer.ai 假面具!AI 服務背後全是「印度工程師」

工程師殺手級工具!一秒自動補齊後續程式碼,還支援 23 種程式語言


我們正在找夥伴!

2019 年我們的團隊正在大舉擴張,需要你的加入跟我們一起找出台灣創新原動力! 我們正在徵 《採訪社群編輯》、《助理編輯》,詳細職缺與應徵辦法 請點我

Viewing all articles
Browse latest Browse all 585

Trending Articles